
It’s all particles

Yassine Mankai1 and Mohamed Rached Waly1

1Telecom Paris, Institut Polytechnique de Paris, Paris

yassine.mankai@telecom-paris.fr

mohamed.waly@telecom-paris.fr

March 2022

1 Introduction

This project aims at implementing different features explored by Müller et al in the field of

position based dynamics. The main idea behind their work is to create a unified solver to

simulate the interaction of different types of 3D objects at once (rigid bodies, cloths, fluids..)

given some environmental constraints.

In order to do so, they proposed to model each object with a set of basic particles. They

opted for particles for their simplicity, versatility and specially for their ability to simulate

a wide range of shapes. Constructing objects starting from particles reduces the number of

collisions to process compared to complex algorithms for generating contacts between mesh

based representations. Finally, the most important reason behind this idea is the fact that

handling each particle separately induces parallelism and it is doable with the presence of

modern graphics processors.

In this report, we are going to present how we approached the subject. We mainly focused

on position based dynamics’ pipeline, shape matching, cloth simulation and different types of

collisions.

2 Implementation

2.1 Data representation

One integral part of the implementation phase was the choice of the data structures to manage

the simulation. We decided to opt for what we found more representative of the core idea of

these kind of systems. Shapes are internally a set of particles, forces and constraints are then

applied on each particle. For that, our scene stores:

- a list of all the particles as a buffer called all particles of a structure called particle element

- a list of all the shapes as a buffer called all shapes of a structure called shape structure

1

2.1.1 Particle structure

We went for spherical particles where each particle structure store different attributes(see

Fig.1).

Figure 1: Particle structure

2.1.2 Shape structure

Each particle is linked to a shape structure by its phase (index of the shape). The shape

structure contains data needed for the calculation of the different shape-related constraints that

will be applied on the correspondent particles. For now, we managed to implement 3 types of

shapes(see Fig.2). For simplicity, we used a generic data structure that contains attributes for

all different types of shapes. A memory optimisation could be achieved using a better software

design with inheritance and polymorphism.

Figure 2: Different shape structures used in the implementation

2.2 The Simulation Loop

We tried to implement the modified position-based dynamics pipeline proposed in Macklin et al.

(2014). For each time step, we do a symplectic integration for each particle in order to predict

a target position x∗. At this level, we only include external forces that can’t be translated into

position constraints.

Next, we do a few stabilization iterations to avoid bad initial conditions. In this step, for each

initial position xi contradicting a contact constraint, we apply position variations to both the

prediction x∗i and the initial position xi. This idea was discussed in the article and it aims at

avoiding the contribution of the stabilization phase into the total energy of the system. We

only include contact constraints as they’re the most visible ones.

After that, we have the solver. Here, we solve for the prediction x∗i all the constraints. In our

case, we have: collisions with the environment, particle-particle collisions if they have different

2

phases, shape matching constraints for rigid and deformable shapes and mass spring systems

for cloth shapes. For each constraint group (shape matching / contact/ springs) affecting a

particle, we calculate an averaged position correction term ∆xi
ni

. During the implementation,

we noted that to have good results, the average should be multiplied by a factor ω. This was

evidently explained in the article with the need for over-relaxation. Finally, in a classic PBD

manner, we update the velocity based on the change in position in the current frame. We also

implemented the particle freezing step discussed in the article to avoid positional drift. The

details are explained in the algorithm 1 in the attached annex.

2.3 Collision handling

We implemented two types of collision-based constraints for our particles: Particle-environment

collision Particle-Particle collision. We tried to keep the pipeline as general as possible. The

idea is to calculate. For each particle, we average over all the contact constraints a position

correction term (dxi) that should project the sphere outside the constrained domain.

2.3.1 Particle-environment collision

- Plane: dxi = (⟨xi − pointwall, normalwall⟩+ radiusparticle) ∗ normalwall

- Sphere: dxi = centersphere + (radiussphere + radiusparticle) ∗
xi−centersphere

∥xi−centersphere∥ − xi

+ In both cases: dxi+ = (−γ ∗ vnormal + θ ∗ vtangential − v) ∗ ∆t
NStabilization

2.3.2 Particle-Particle collision

To solve the collisions between particles, we had to search each step for the neighborhood of each

particle. The brute force approach was computationally heavy. We opted for the simple solution

of regular grids as an optimization data structure. The idea is to divide a space into fixed sized

cells. Each cell stores the indices of particles in it. Then, to query a particle neighborhood,

we look for its cell and the ones next to it. To have good results, we needed a cell size small

enough to hold few particles but big enough to avoid multiple empty cells. A way to achieve

such results was to generate a fixed resolution regular grid for each shape and to make the

query iterate over each one of them. The choice of the resolution was made in order to have

the potentially colliding particles only in directly neighboring cells (For the moment, it is hard

coded but can be improved for general purpose). Access and updates are implemented using

simple hash functions.

Having this range query implemented, we can detect interpenetration between any two particles.

Projection constraints are implemented for any couple of particles having different phases. This

should allow to simulate the interaction between two different objects in the scene for simple

situations.

2.4 Shape matching

The shape matching presented in Müller et al. (2005) can be stated as the following , find the

optimal rotation R and translation t to transform the points xi(current representation) as close

3

as possible to x0i (initial representation).

The problem is formulated as follows: find R and t that minimizes:

∑
mi(R(x0i − t0) + t− xi)

2

Optimal translation

the optimal translation is the translation between the center of mass of the initial shape and

the current center of mass.

Optimal rotation

Centering the initial and the actual points lets us determine only the optimal linear transfor-

mation A and not worry about the translation.

The formulation of the problem becomes: finding A that minimizes:

(
∑

mipiq
T
i)(

∑
miqiq

T
i)

−1 = ApqAqq

Aqq terms contains only scaling, we will be focusing only on Apq. Extracting the rotation

part of this matrix consists in applying a polar decomposition Apq = RS where S =
√
AT

pqApq

The target points are then calculated doing:

gi = R(x0i − x0cm) + xcm

In the paper Müller et al. (2005), they mentioned that this method can simulate only small

deviations from the rigid body to extend the range of motion. To extend the range of motion

they used the linear transformation matrix A to calculate the targets. They used not precisely

A but A divided by 3
√

det(A) to ensure volume preservation (det(A) = 1)

The target in that case is:

gi = (βA+ (1− β)R)(x0i − x0cm) + xcm

The details are explained in the algorithm 2 in the attached annex.

Calculating targets will enable us to calculate the x associated to the shape matching con-

straints which will be:

△shapeMatchingxi = α ∗ (gi − xi) where α is a parameter which simulates stiffness [Müller et al.

(2005)] and in [0, 1]

Quadratic variation

Linear transformations presented above can only represent shear and stretch. According to

Müller et al. (2005), we can extend the version to a quadratic version where the initial relative

location will encapsulate also quadratic variations of the initial relative location.

In this version the qi is [qx, qy, qz, q
2
x, q

2
y , q

2
z , qxqy, qyqz, qzqx]

The details are explained in the algorithm 3 in the attached annex.

2.5 Cloth

We model cloth as a purely elastic shape. We used a 2D mass spring system with structural,

shearing and bending springs. This choice is due to the simplicity of the formulation of such

system as distance constraints which fits well with the particle solver we used. The particles are

sampled on an N*N grid and all have the same mass. The spring constraints are implemented as

4

position variations in the general shape constraints of the solver loop (algorithm 1). A distance

constraint between two particles pi and pj is expressed for pi as:

∆springxi = k ∗ (∥xi − xj∥ − L) ∗ normalize(xj − xi)

2.6 Implementation details

To simulate rigid shape, we used either the linear or quadratic version of the shape matching.

To simulate deformable shape, we used the quadratic version of the shape matching for more

satisfying results.

α ≃ 1 and β ≃ 0.5 means we want to simulate a rigid body.

Low values of α and β means we want to simulate a deformable body.

3 Results

Figure 3: 3 scenes: Trampoline,Curtain,Shape Matching (left to right)

All the results we will be discussing below are accompanied with a video. We will be only

discussing the context of each scene.

The red spheres present in the scene are environment’s obstacles and not shapes made by shape

matching. They are defined by the user’s input.

We also provided some parameters to tweak in the graphical user interface.

3.1 Shape matching

The linear and quadratic shape matching are both well suited for rigid bodies. But if we would

like to create a not fully rigid body, the use of the quadratic form of the shape matching is

mandatory. To test the shape matching we created a scene where a cube drops to get squeezed

between four spheres(environment obstacles).

5

3.2 Cloth

We wanted to test the constraints that we implemented for the cloth. We fixed all the boundary

particles of the cloth which was oriented horizontally and we pushed an environment’s obstacle

to go through it.

3.3 Trampoline

We wanted to test the collision between shapes and the calculation of friction and restitution

velocities. We created a scene where we fixed all the particles on the boundary of the cloth and

tilted a bit its orientation. Then we dropped a cube on it to see the interaction between the

two.

We noticed that the cube bounces on the trampoline, drops on the ground and stops moving.

3.4 Curtain

This is a second test of the collision between shapes in our scene and the impact of the stiffness

of the cloth on the simulation.

We fixed the upper right and left particle of the cloth which was oriented vertically. We also

reduced the spacing between particles comparing to the trampoline to have the correct be-

haviour. Then we moved some obstacles to bounce a shape on it in order for it to go through

the curtain. We noticed that when the cube collides with an environment obstacle (red sphere)

he is squashed but not when collided with the curtain.

4 Discussion

4.1 Friction and restitution

Taking in consideration friction and restitution plays a great part in the credibility of the scene.

Without them, shapes won’t bounce correctly when they hit an obstacle and will keep sliding

on the floor. Collision between particles could also be improved with the use of a proper friction

model. To solve this issue, we made a slight change in the pipeline presented in Macklin et al.

(2014) (see 2.3). When handling contacts in the solver phase, we add a correction term to the

position delta. This approach presents an issue: It is highly dependent on the scene we want to

implement. Different friction and restitution models were discussed in other research papers.

Some changes were also proposed on the PBD pipeline to incorporate such phenomenon.

4.2 Entanglement Effect

Even with considering friction and restitution, some times the shapes doesn’t collide correctly.

In our implementation, the collision between two particles happens along side the normal of the

plane tangent to the sphere. This is the main to reason behind the entanglement effect. In fact

Macklin et al. (2014) proposed an approach based on signed distance field within each shape

to remediate this problem. The idea is to change the normals direction on each particle of the

boundary of the shape. Because, in the case of a particle that penetrated another shape (let’s

6

say fault of the time step of the simulation), this type of normals can help guide it to the outside.

Figure 4: Sphere normals proposed in Macklin et al. (2014)

4.3 GPU parallelization

For now, we are processing the main loop and the calculations on the cpu side. This limits our

number of shapes present in the scene, even now with only two shapes we have some drastic fps

drop.

This approach will be fully exploitable if we passed the heavy calculation to the gpu. Being a

system composed only by particles, we can process each one seperately on the gpu. This is can

be a major improvement for our implementation and thus we can add multiple shapes at once.

4.4 Impact of variables

The simulation implemented is heavily dependant on the initial variables given by the user i.e

number of iterations, time step, stabilization and solving iterations. We couldn’t manage to

find a general solution to this problem. So we add some presets to the simulation where the

user can switch between predefined scenes to explore the features that we implemented.

7

References

Macklin, Miles et al. (July 2014). “Unified Particle Physics for Real-Time Applications”. In:
ACM Trans. Graph. 33.4. issn: 0730-0301. doi: 10.1145/2601097.2601152.

Müller, Matthias et al. (July 2005). “Meshless Deformations Based on Shape Matching”. In:
ACM Trans. Graph. 24.3, pp. 471–478. issn: 0730-0301. doi: 10.1145/1073204.1073216.

List of Figures

1 Particle structure . 2

2 Different shape structures used in the implementation 2

3 3 scenes: Trampoline,Curtain,Shape Matching (left to right) 5

4 Sphere normals proposed in Macklin et al. (2014) 7

8

https://doi.org/10.1145/2601097.2601152
https://doi.org/10.1145/1073204.1073216

Algorithm 1 The simulation loop

1: initialize NStep,NStabilization,Nsolver,ϵ
2: for k 0 : NStep do
3: △t ⇐ △t0/NStep ▷ △t0 user’s input
4: for all particles do
5: compute external forces
6: store previous positions ▷ denoted xi
7: apply forces vi ⇐ vi +△tfext(xi)
8: predict positions x∗i ⇐ xi +△tvi

9: (Update neighbours) ▷ uniform grid on all particles

10: (Stabilization phase) ▷ to avoid bad initial conditions
11: for k 0 : NStabilization do
12: (Solve Contact Constraints for xi) ▷ ni number of contact constraints for i
13: evaluate dxi and ni ▷ dxi accumulated over all the contact constraints
14: for all affected particles do
15: x∗i ⇐ x∗i +

dxi
ni

16: xi ⇐ xi +
dxi
ni

17: (Solver)
18: for k 0 : Nsolver do
19: (Solve Shape Matching Constraints) ▷ check algorithm 2
20: for all shapes with shape matching constraint do
21: calculate optimal rotation Ri and linear transformation Ai

22: for all particles affected do
23: update x∗i ⇐ x∗i + dx∗i

24: (Solve General Shape Constraints)
25: for all general shape constraints do
26: evaluate dx∗i and n∗

i ▷ n∗
i number of shape constraints for i

27: for all affected particles do

28: update x∗i ⇐ x∗i +
dx∗

i
n∗
i

29: (Solve Contact Constraints for x∗i) ▷ n∗
i number of contact constraints for i

30: evaluate dx∗i and n∗
i ▷ dx∗i accumulated over all the contact constraints

31: for all affected particles do

32: x∗i ⇐ x∗i +
dx∗

i
n∗
i

33: (adjust Velocities)
34: for all particles do
35: vi ⇐ 1

△t(x
∗
i − xi)

36: (particle sleeping)
37: if ||x∗i − xi|| < ϵ then
38: x∗i ⇐ xi

9

Algorithm 2 Shape Matching

1: (Preprocessing part)
2: for all shapes with shape matching constraint do
3: calculate relative locations qi ⇐ x0i − x0cm
4: calculate the symmetric part Aqq =

∑
miqiq

T
i and store A−1

qq

5: (Inside the simulation loop)
6: calculate Apq =

∑
mipiq

T
i

7: polar decomposition of Apq = RS with S =
√

AT
pqApq

8: calculate Ā = A
3
√

det(A)
with A = ApqAqq ▷ volume preservation

9: calculate targets gi = βRqi + (1− β)Āqi + xcm
10: xi ⇐ xi +△xi with △xi = α(gi − xi)

Algorithm 3 Shape Matching Quadratic

1: (Preprocessing part)
2: for all shapes with shape matching quadratic constraint do
3: calculate relative locations qi = [qx, qy, qz, q

2
x, q

2
y , q

2
z , qxqy, qyqz, qzqx]

4: calculate the symmetric part Aqq =
∑

miqiq
T
i and store A−1

qq

5: (Inside the simulation loop)
6: calculate Apq =

∑
mipiq

T
i

7: same polar decomposition of Apq = RS ▷ same rotation R of algorithm 2
8: calculate Ā = ApqAqq = [AQM]
9: replace A by A√

det(A)
in Ā

10: calculate targets gi = βR̄qi + (1− β)Āqi + xcm with R̄ = [R00] ∈ R3X9

11: xi ⇐ xi +△xi with △xi = α(gi − xi)

10

	Introduction
	Implementation
	Data representation
	Particle structure
	Shape structure

	The Simulation Loop
	Collision handling
	Particle-environment collision
	Particle-Particle collision

	Shape matching
	Cloth
	Implementation details

	Results
	Shape matching
	Cloth
	Trampoline
	Curtain

	Discussion
	Friction and restitution
	Entanglement Effect
	GPU parallelization
	Impact of variables

